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OPEN THE DOOR TO 
DISCOVERY
To confine our attention to terrestrial matters 
would be to limit the human spirit.

–Stephen Hawking

Learning is a complex process of acquiring new infor-
mation, comparing it to what we think we know, 

learning how to unlearn incorrect information, finding 
places for new facts in our memories, and finding ways 
of recalling them, among other things. Based on decades 
of teaching and of studying how people learn, Discover-
ing the Universe incorporates a wide variety of insights 
in many places that help students both learn (currently 
accepted information) and unlearn (misconceptions 
about the cosmos). Indeed, Discovering the Universe 
has all the elements needed to learn quickly and effi-
ciently, and all at a student-friendly level.

PREFACE

The eleventh edition of Discovering the Universe 
includes: many brand-new images, including some of 
Pluto, Ceres, and Jupiter; updates on the search for life on 
other worlds; and exciting results of gravitational wave 
and neutrino observations, among many other things. The 
book also provides coverage of many recent astronomical 
discoveries, all presented at a level accessible and insightful 
to students. This edition includes new pedagogical features 
to engage and challenge students, along with additional 
examples of the familiar features from previous editions.

NEW! Exoplanets Chapter expands the coverage of 
our rapidly developing knowledge and understanding of 
exoplanets (planets orbiting stars other than the Sun).

NEW! Meet the Discoverers interviews working 
astronomers across the field to provide insight into the 
process of doing science, as well as the inspiration that 
drives the people who do that work. This material will 
help students understand astronomy as an active, rele-
vant, and vibrant discipline.

MEET THE DISCOVERERS  �
Dr. John Johnson is a Professor of Astronomy at Harvard University, where he leads the ExoLab, specializing in the detection and 
characterization of exoplanets. 

(Michael Wong)
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xiv     P R E FA C E

An Astronomer’s Toolbox introduces some of the alge-
braic equations used in astronomy. Most of the mate-
rial in the book is descriptive, so essential equations 
are set off in numbered boxes to maintain the flow of 
the material and to allow students and instructors to 
focus on the right level of quantitative material for their 
course. The toolboxes also contain worked examples, 
additional explanations, and practice doing calcula-
tions; answers are given at the end of the book. All the 
equations are summarized in Appendix C.

Wavelength Indicators included with photographic 
images show whether an image was made with radio 
waves (R), infrared radiation (I), visible light (V), ultra-
violet light (U), X-rays (X), or gamma rays (G).
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telescope in Texas and the Southern African Large Tele-
scope in South Africa each have 91 mirrors. 

    Another method to increase resolution, called    inter-
ferometry    ,  combines images from different telescopes. 
For example, used together to observe the same object, 
the two Keck telescopes have the resolving power of a 
single 85-m telescope. The four 8.2-m reflectors of the 
Very Large Telescope at the Paranal Observatory com-
bine to create the resolution that would come from a 
single telescope 200 m in diameter. This observatory has 
an ideal resolution of about 0.0020.   

   NONOPTICAL ASTRONOMY  
 Looking back at  Figure 3-6 , you can see that visible light 
represents a very tiny fraction of the electromagnetic 
spectrum. As late as the 1940s, astronomers had no idea 
how much nonvisible radiation is emitted by objects in 
space. However, today we know that many objects in 
space emit undetectable amounts of visible light, but 
release large amounts of nonvisible radiation. Specially 
designed telescopes gather electromagnetic energy in all 

of the nonvisible parts of the spectrum. From the radio 
waves and infrared radiation being emitted by vast 
interstellar gas clouds to the ultraviolet radiation and 
X-rays from the remnants of stars to bursts of gamma 
rays of extraordinary power from merging black holes 
and other sources, our growing ability to see the entire 
electromagnetic spectrum is revealing myriad intriguing 
phenomena. To get a sense of how much we do not see 
in the visible part of the spectrum, look at   Figure 3-32  , 
which shows visible, ultraviolet, and infrared images of 
the familiar constellation Orion. 

      3-14  A radio telescope uses a large concave 
dish to collect radio waves  
 The first evidence of nonvisible radiation from outer 
space came from the work of a young radio engineer, 
Karl Jansky (1905–1950), at Bell Laboratories in Holm-
del, New Jersey. Using radio antennas, Jansky was 
investigating the sources of static that affect short-wave-
length radiotelephone communication. In 1932, he real-
ized that a certain kind of radio noise is strongest when 
the constellation Sagittarius is high in the sky. Because 

Betelgeuse

Alnitak

Sword

a b

      FIGURE   3-32   Orion as Seen in Visible, Ultraviolet, and Infra-
red Wavelengths    In (a),  an optical photograph of the constella-
tion Orion, the bright upper-left star is Betelgeuse, Orion's right 
shoulder (as he is facing us in mythology). The left star in his belt 
(as we see it) is Altinak. His sword is located between his legs. 
(b) An ultraviolet image of Orion. (c) A false-color view from the 

Infrared Astronomical Satellite of the entire Orion asterism. Dif-
ferent colors indicate different intensities of infrared radiation. 
Clearly, different wavelengths provide different information 
about various objects in space.  (a:  peresanz/iStock/Getty Images; 
b: NASA/MSX/Johns Hopkins University Applied Physics Laboratory; 
c: NASA/JPL-Caltech)   
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Margin Questions give students 
the opportunity to reinforce a vari-
ety of important concepts they have 
read in just the previous page or 
two. This can help solidify concepts 
that are challenging, easy to con-
fuse, or that are associated with common misconceptions.

In This Chapter items provide the most important learn-
ing goals of each chapter. It helps orient students to the 
upcoming topics and provides a checklist for their read-
ing of the chapter.

Insight Into Science boxes provide insights into how 
science works, why it works, what scientists do, and 
how science protects itself from pseudoscientific claims. 
These boxes provide important information that applies 
to all realms of science and, as such, takes students 
beyond just the factual information about astronomy.
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pollution from the two cities now fills the night sky, seri-
ously reducing the ability of that telescope to collect light 
from objects in space. Not surprisingly, the best observ-
ing sites in the world are high on mountaintops, such as 
Mauna Kea—above smog, water vapor, and clouds, and 
far from city lights. An even better location, astronomers 
have discovered, is to observe space from space, eliminat-
ing the interference of both the lights of civilization and 

Earth’s atmosphere. Removing these 
effects is why the Hubble Space Tele-
scope and other orbiting telescopes 
achieve such magnificent resolution in 
the images they take. 

              3-12  The Hubble Space Telescope provides 
stunning details about the universe  
 For decades, astronomers dreamed of observatories in 
space. Such facilities would eliminate the image distortion 
created by twinkling and by poor atmospheric transpar-
ency due to pollution, volcanic debris, and water vapor. 
These telescopes could operate 24/7 and over a wide range 
of wavelengths—from the infrared through the visible 
range and far out into the gamma-ray part of the spectrum. 
Since 1990, NASA and other space agencies have launched 
a variety of space telescopes, including four of what NASA 
called its Great Observatories. The first Great Observatory 
to go up was the Hubble Space Telescope (HST). 

 Soon after HST was placed in orbit from the space 
shuttle  Discovery  in 1990, astronomers discovered that 
the telescope’s 2.4-m primary mirror had been ground to 
the incorrect shape. Therefore, it suffered from spherical 
aberration, which caused its images to be surrounded by 
a hazy glow. During a repair mission in December 1993, 
astronauts installed corrective optics that eliminated 
the problem (  Figure 3-29  ). The telescope was further 
upgraded in 1997, 1999, 2002, and 2009. Now HST has 
a resolution of better than 0.10, which is better than can 
be obtained by telescopes on Earth’s surface without the 
use of advanced technology (as discussed in  Section 3-13 ). 

   WHAT IF... 

 Stars actually twinkled?  
 Stars appear to significantly change their brightness (twinkle) 
in fractions of a second. If they actually did vary in brightness 
as much as we see them vary, they would do so by changing 
size—bigger is brighter. If such expansion and contraction 
occurred, the rapid motion of their gases would cause stars 
to blow apart in a matter of seconds. 

R I V U X GR I V U X G

        FIGURE   3-28   Light Pollution    These two images of New York City, as 
seen from under the Brooklyn Bridge, show the increase of light in the 
sky from 1955 to 2010. Compare the skies just above the buildings. This 
light prevents New Yorkers from seeing dimmer stars that are visible 

in darker locations. Since 1972, light pollution, a problem for many 
observatories around the world, has been partially controlled by local 
ordinances passed by cities. (Left: D. CORSON/ClassicStock/Alamy; 
Right: Anhgemus Photography/Moment Open/Getty Images)  

a b

   Insight Into Science 

 Research Requires Patience    Seeing conditions—
indeed, most observing situations in science—are 
rarely ideal. Besides such natural phenomena, which 
are beyond their control, scientists must also contend 
with equipment failures, late deliveries of parts, and 
design flaws. Furthermore, because travel time is so 
long, some missions (like the robotic spacecraft roving 
on Mars or the New Horizons voyage to Pluto and the 
Kuiper belt) take years or even decades to complete. 

  Margin Question 3-7  
 Where in a typical house can 
the seeing problems described 
in  Section 3-11  be observed? 
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What Do You Think? questions at the beginning of each 
chapter invite students to examine and challenge their 
current understanding of astronomical phenomena. Tags 
within the text sections indicate where students can look 
to find the relevant information. What Did You Think? 
answers at the end of each chapter ask students to revisit 
their initial answers and reconcile them with what they 
have learned over the course of the chapter.

7 3
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  Answers to these questions appear in the text beside the corresponding numbers in the margins and 
at the end of the chapter.   

    The four 1.8 m telescopes at the European Southern Observatory’s Paranal Observatory in Chile. 
These telescopes can be moved and they are used in support of the Observatory’s four 8.2 m Very 
Large Telescopes. (J. Colosimo/ESO)  

      CHAPTER

  3   Light and Telescopes     

        W H AT  D O  Y O U  T H I N K ?  

    1    What is light?   

   2    Which type of electromagnetic radiation 
is most dangerous to life?   

   3    What is the main purpose of a telescope?   

   4    Why do research telescopes that collect 
electromagnetic radiation use mirrors, rather 
than lenses, to collect light?   

   5    Why do stars twinkle?   

   6    What are cosmic rays? Where do they 
come from?    
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       Rømer’s subsequent calculation of the speed of 
light was off by 25% because the value for the astro-
nomical unit (the average distance from Earth to the 
Sun) that existed at that time was highly inaccurate. 
Nevertheless, he proved his main point—light travels 
at a finite speed. The first accurate laboratory measure-
ments of the speed of visible light were performed in 
the mid-1800s. 

 Maxwell’s equations also reveal that light of all 
wavelengths travels at the same speed in a vacuum 
(a region that contains no matter), and, despite a few 
atoms per cubic meter, the space between planets and 
stars is a very good vacuum. The constant speed of light 
in a vacuum, usually designated by the letter  c,  has been 
measured to be 299,792.458 km>>s, which we generally 
round to 

 c 5 3.0 3 105 km>>s 5 1.86 3 105 mi>>s 

 (Standard abbreviations for units of speed, such as  km >> s  
for kilometers per second and  mi >mi> s  for miles per second, 
will be used throughout the rest of this book.) Light that 
travels through air, water, glass, or any other substance 
always moves more slowly than it does in a vacuum.    

  The value  c  is a fundamental property of the uni-
verse. The speed of light appears in equations that 

describe, among other things, atoms, 
gravity, electricity, magnetism, distance, 
and time. Light has extraordinary prop-
erties. For example, if you were trav-
eling in space at 99% of the speed of 
light, 0.99 c , you would still measure the 
speed of any light beam moving toward 
you as  c , which is also the speed you 
would measure for any light beam mov-
ing away from you!  

    3-3  Einstein showed that light sometimes 
behaves as particles that carry energy  
   1  By 1905, scientists were comfortable with the wave 
nature of light. However, in that year, Albert Einstein 
(1879–1955) threw a monkey wrench into that the-
ory when he proposed that light is composed of par-
ticles that have wave properties, creating what is now 
called the  wave-particle duality.  He used this idea to 
explain the  photoelectric effect.  Physicists knew that 
electrons are bound onto a metal’s surface by electric 
forces and that it takes energy to overcome those forces. 
Shorter wavelengths of light can knock some electrons 
off the surfaces of metals, while longer wavelengths 
of light cannot, no matter how intense the beam of 
long-wavelength light. Because some colors (or, equiva-
lently, wavelengths) can remove the electrons and others 
cannot, the electrons must receive different amounts of 

energy from different colors of light. But how? Einstein 
proposed that light travels as waves enclosed in discrete 
packets, now called    photons    ,  and that photons with 
different wavelengths have different amounts of energy. 
Specifically, the shorter the wavelength, the higher a 
photon’s energy. 

 Photon energy 5
Planck’s constant 3 the speed of light

Wavelength
 

 where Planck’s constant, named for the German 
physicist Max Planck (1858–1947) has the value 
6.67 3 10234 J ##s,   where J is the unit of energy called a 
joule  (see   An Astronomer’s Toolbox 3-1 : Photon Ener-
gies, Wavelengths, and Frequencies ), and the wavelength, 
the distance between wave crests or troughs, is shown in 
 Figure 3-3 . (J ##s   stands for joules multiplied by seconds, 
or  joule-seconds. ) Einstein’s concept of light, confirmed 
in numerous experiments, means that light can act both 
as waves (as when passing through slits) and as particles 
(as when striking matter). 

 The waves shown in  Figure 3-3  are moving to the 
right. If you count the number of wave crests that pass a 
given point per second, you have found the    frequency    of 
the photon. The unit of frequency is the  hertz , named for 
the German physicist Heinrich Hertz (1857–1894). One 
hertz means that 1 cycle per second—or that 1 wave 
crest per second—passes any point. A thousand hertz 
means a thousand cycles per second, and so on. The fre-
quency is used, among many other things, to identify 
radio stations. For example, WCPE radio in Wake For-
est, North Carolina, has a frequency of 89.7 megahertz 
(a megahertz is a million hertz or a million cycles per 
second). Frequency is discussed further in An Astrono-
mer’s  Toolbox 3-1 . 

  Returning to the photoelectric effect, all photons 
with the same wavelength are identical to each other, 
and, therefore, every photon of a given wavelength car-
ries the same amount of energy as every other photon 
with that wavelength. The energy delivered by a photon 
is either enough to eject an electron from the surface of 
the metal or it is not; there is no middle ground. Exten-
sive testing in the twentieth century confirmed both the 
wave and particle properties of light. 

 While the energy of a single photon is fixed by its 
wavelength, the total number of photons passing per 
second from that source with a given energy determines 
the intensity of the electromagnetic radiation at that 
wavelength (that is, how bright the object appears to 
be). The more photons detected, the higher the inten-
sity, and vice versa. However, the intensity of light does 
not change the energy per photon. If one photon is 
unable to eject an electron from a metal, then billions of 
photons with that energy will still be unable to remove 
that electron.  

  Margin Question 3-2  
 The speed of sound is about 
0.34 km>>s (0.21 mi>>s). How 
can these numbers and the 

information in this section be 
used to determine a person’s 

distance from a lightning strike? 
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What If... questions inspire student curiosity and invite 
them to think critically about the way our universe works.
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pollution from the two cities now fills the night sky, seri-
ously reducing the ability of that telescope to collect light 
from objects in space. Not surprisingly, the best observ-
ing sites in the world are high on mountaintops, such as 
Mauna Kea—above smog, water vapor, and clouds, and 
far from city lights. An even better location, astronomers 
have discovered, is to observe space from space, eliminat-
ing the interference of both the lights of civilization and 

Earth’s atmosphere. Removing these 
effects is why the Hubble Space Tele-
scope and other orbiting telescopes 
achieve such magnificent resolution in 
the images they take. 

              3-12  The Hubble Space Telescope provides 
stunning details about the universe  
 For decades, astronomers dreamed of observatories in 
space. Such facilities would eliminate the image distortion 
created by twinkling and by poor atmospheric transpar-
ency due to pollution, volcanic debris, and water vapor. 
These telescopes could operate 24/7 and over a wide range 
of wavelengths—from the infrared through the visible 
range and far out into the gamma-ray part of the spectrum. 
Since 1990, NASA and other space agencies have launched 
a variety of space telescopes, including four of what NASA 
called its Great Observatories. The first Great Observatory 
to go up was the Hubble Space Telescope (HST). 

 Soon after HST was placed in orbit from the space 
shuttle  Discovery  in 1990, astronomers discovered that 
the telescope’s 2.4-m primary mirror had been ground to 
the incorrect shape. Therefore, it suffered from spherical 
aberration, which caused its images to be surrounded by 
a hazy glow. During a repair mission in December 1993, 
astronauts installed corrective optics that eliminated 
the problem (  Figure 3-29  ). The telescope was further 
upgraded in 1997, 1999, 2002, and 2009. Now HST has 
a resolution of better than 0.10, which is better than can 
be obtained by telescopes on Earth’s surface without the 
use of advanced technology (as discussed in  Section 3-13 ). 

   WHAT IF... 

 Stars actually twinkled?  
 Stars appear to significantly change their brightness (twinkle) 
in fractions of a second. If they actually did vary in brightness 
as much as we see them vary, they would do so by changing 
size—bigger is brighter. If such expansion and contraction 
occurred, the rapid motion of their gases would cause stars 
to blow apart in a matter of seconds. 
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        FIGURE   3-28   Light Pollution    These two images of New York City, as 
seen from under the Brooklyn Bridge, show the increase of light in the 
sky from 1955 to 2010. Compare the skies just above the buildings. This 
light prevents New Yorkers from seeing dimmer stars that are visible 

in darker locations. Since 1972, light pollution, a problem for many 
observatories around the world, has been partially controlled by local 
ordinances passed by cities. (Left: D. CORSON/ClassicStock/Alamy; 
Right: Anhgemus Photography/Moment Open/Getty Images)  
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   Insight Into Science 

 Research Requires Patience    Seeing conditions—
indeed, most observing situations in science—are 
rarely ideal. Besides such natural phenomena, which 
are beyond their control, scientists must also contend 
with equipment failures, late deliveries of parts, and 
design flaws. Furthermore, because travel time is so 
long, some missions (like the robotic spacecraft roving 
on Mars or the New Horizons voyage to Pluto and the 
Kuiper belt) take years or even decades to complete. 

  Margin Question 3-7  
 Where in a typical house can 
the seeing problems described 
in  Section 3-11  be observed? 
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Guided Discovery goes in-depth on challenging astro-
nomical concepts to help students gain a conceptual 
understanding through thoughtful analogies and useful 
perspectives from the history of science.

An Astronomer’s Almanac, a dynamic timeline that 
relates discoveries in astronomy to other historical events, 
opens each of the four Parts of the text. These almanacs 
provide strong context for the information presented.
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sometimes categorized as infrared radiation or radio 
waves. Formally, radio waves are all electromagnetic 
waves longer than 10 cm. 

   The various types of electromagnetic radiation 
share many basic properties. For example, they are all 
photons, they all travel at the same speed, and they all 
sometimes behave as particles and sometimes as waves. 
But, because of their different wavelengths (and there-
fore different energies), they interact very differently 
with matter. For example, X-rays penetrate deeply into 
your body tissues, while visible light is mostly stopped 
and scattered by the surface layer of skin; your eyes 
respond to visible light but not to infrared radiation; 
and your radio detects radio waves but not ultraviolet 
radiation. 

 Earth’s atmosphere is relatively transparent to visible 
light, radio waves, microwaves, short-wavelength infra-
red, and long-wavelength ultraviolet. As a result, these 
radiations pass through the atmosphere without much 
loss and can be detected by ground-based telescopes 
sensitive to them. Astronomers say that the atmosphere 
has  windows  for these parts of the electromagnetic spec-
trum   (Figure 3-7)  . 

   The longest-wavelength ultraviolet radiation, called 
UVA, causes tanning and sunburns. Ozone (O 3 ) in 
Earth’s atmosphere normally screens out intermediate- 
wavelength ultraviolet radiation, or UVB. Until recently, 
the ozone in the  ozone layer  high in the atmosphere was 
being depleted by human-made chemicals, such as chlo-
rofluorocarbons (CFCs) and bromine-rich gases. As a 
result, more UVB is reaching Earth’s surface, and these 
highly energetic photons severely damage living tissue, 
causing a surge in the rates of skin cancer and glaucoma, 
among other diseases. 
   2  Earth’s atmosphere is completely opaque to the 
other types of electromagnetic radiation, meaning that 
they do not reach Earth’s surface. (This opacity is a 
good thing, because short-wavelength ultraviolet radia-
tion [UVC], X-rays, and gamma rays are devastating to 
living tissue. Gamma rays, packing the highest energies, 
are the deadliest.) Direct observations of these wave-
lengths must be performed high in the atmosphere or, 
ideally, from space. 

 As noted earlier, photons with different energies 
interact with matter in different ways. Higher-energy 
photons will pass through or rip apart material from 
which lower-energy photons will bounce off. Telescope 
designs for collecting and focusing radiation, there-
fore, differ depending on the energies or, equivalently, 
the wavelengths of interest. Knowing the energies of 
photons and their effects on matter enables astrono-
mers to design telescopes and recording devices sensi-
tive to them. In the next section we will consider the 
lengths to which astronomers have gone to capture 
visible and invisible (or nonoptical) electromagnetic 
radiation.   

       As shown in   Figure 3-6  , the electromagnetic spec-
trum stretches from the longest-wavelength radio 
waves, through microwaves, infrared radiation, visible 

light, ultraviolet radiation, and X-rays, 
to gamma rays, the shortest-wavelength 
photons. On the long-wavelength side 
of the visible spectrum, infrared radia-
tion covers the range from about 700 
nm to 1 mm. Astronomers interested in 
infrared radiation often express wave-

length in  micrometers  or  microns  (abbreviated mm), 
where 1 mm 5 1000 nm 5 1026 m. From roughly 1 mm 
to 10 cm is the range of microwaves. Microwaves are 
sometimes considered as a separate class of photons and 

  Margin Question 3-3  
 Which has more energy, 
an infrared photon or an 

ultraviolet photon? 

Visible light 
heats these 
thermometers

Infrared radiation
heats this 
thermometer

      FIGURE   3-5   Experimental Evidence for Infrared Radiation    
This photograph shows the visible colors separated by a prism. 
The two thermometers in the region illuminated by visible light 
have temperatures less than the thermometer to the right of 
red. Therefore, there must be more radiation energizing (that is, 
heating) the warmest thermometer. This energy is what we call 
infrared radiation—invisible to the human eye but detectable as 
heat.  (NASA/JPL-   Cal Tech  )   
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Starry NightTM Explorations in the end-of-chapter ques-
tions ask students to be astronomers themselves by 
providing activities to complete within the robust, inter-
active Starry NightTM observational software.

ONLINE HOMEWORK AND 
MEDIA

Sapling Plus for Discovering the Universe combines the 
rigor of Sapling homework with the formative power 

of LearningCurve adaptive quizzing. In the Sapling 
homework, every question includes hints, targeted, 
answer-specific feedback, and fully worked-out solu-
tions to guide students through their progress toward 
understanding.
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LearningCurve adaptive quizzing provides material 
at different difficulty levels and topics based on stu-
dent performance. Students work to achieve a target 
score, allowing highly prepared students to com-
plete the activity promptly, and providing students 

unfamiliar with the material the necessary time to 
practice. The student and instructor dashboards pro-
vide the accuracy of student responses for each topic, 
giving insight into important topics to review in class 
or study.

The mobile-accessible e-book included with every 
course contains embedded animations to augment 
the striking visuals found in the text, as well as many 
tools for studying, such as shareable highlighting, note-
taking, and flashcards.

Achieve Read & Practice marries Macmillan Learning’s 
mobile-accessible e-book with the acclaimed Learning-
Curve adaptive quizzing. It is an easy-to-use yet excep-
tionally powerful teaching and learning option that 
streamlines the process of increasing student engagement 
and understanding. Instructors can assign reading simply, 
students can complete assignments on any device, and the 
cost is significantly less than that of a printed book.

With Achieve Read & Practice:

•	 Instructors can arrange and assign chapters and sec-
tions from the e-book in any sequence they prefer.

•	Assignments come with LearningCurve quizzes offer-
ing individualized question sets, feedback, and e-book 

references that adapt to correct and incorrect answers. 
If students struggle with a particular topic, they are 
encouraged to reread the material and answer a few 
short additional questions.

•	The Read & Practice gradebook tracks student per-
formance individually and for the whole class, helping 
instructors shape their lectures and address underper-
forming topics.

STARRY NIGHTTM

Starry NightTM is a brilliantly realistic planetarium soft-
ware package. It is designed for easy use by anyone with 
an interest in the night sky. See the sky from anywhere 
on Earth or lift off and visit any solar system body or 
any location up to 20,000 light-years away. A download 
code for Starry NightTM is available with the text upon 
request.

INSTRUCTORS RESOURCES
The instructor’s resources for Discovering the Universe 
are all available for download from SaplingPlus, as well 
as from the Macmillan Learning catalog site.

The Test Bank offers more than 3,500 multiple-choice 
questions that are section-referenced, available in 
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      part   I   UNDerStaNDING 
the SCIeNCe OF 
aStrONOMY          

telescopes enhance our views of the cosmos.  (NaSa/MSFC/emmett Given)   
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Stars �xed on celestial sphere.

Celestial sphere rotates to the west.

Greek Golden  Age

European Renaissance

Information Age

Industrial Revolution

AN ASTRONOMER’S ALMANAC DISCOVERING ASTRONOMY

1871-1873 Dimitri Mendeleyev 
develops periodic table of the 
elements. Henry Draper develops 
spectroscopy. James Clerk 
Maxwell asserts that light is an 
electromagnetic phenomenon.

1885-1888 Johann 
Balmer expresses 
spectral lines of 
hydrogen mathematically. 
Heinrich Hertz detects 
radio waves. 

1847 Maria Mitchell 
observed a comet, 
now called “Miss 
Mitchell’s Comet,” 
through a telescope.

1895-1897 Wilhelm 
Roentgen discovers X-rays. 
Joseph Thomson detects 
the electron. Yerkes 40-in. 
optical refracting  
telescope completed. 
(ALAN SOLOMON/Tribune 
News Service/LAKE 
GENEVA/WI/USA/Newscom)

1900 Max Planck explains 
blackbody radiation. Paul 
Villard discovers gamma rays.

1942-1949 J. S. Hey detects 
radio waves from the Sun. First 
astronomical telescope launched 
into space. Herbert Friedman 
detects X-rays from the Sun. 
200-in. optical reflecting telescope 
begins operation on Mt. Palomar, 
California. (Lockheed-Martin Solar & 
Astrophysics Laboratory, the National 
Astronomical Observatory of Japan, 
the University of Tokyo, NASA & ISAS)

1990-1996 Hubble Space 
Telescope launched. Keck 10-m 
optical/infrared telescopes begin 
operation at Mauna Kea,  Hawaii. 
SOHO solar observatory 
launched. (Chris Butler/Science 
Source)

1930-1934 Karl 
Jansky builds first 
radio telescope. 
James Chadwick 
discovers the 
neutron. Bernhard 
Schmidt builds his 
Schmidt optical 
reflecting telescope.

1963-1967 Largest 
single-dish radio telescope, 
300 m across, begins 
operation at Arecibo, Puerto 
Rico. First Very Long 
Baseline Interferometer 
(VLBI) images.

2004-present 
Two rovers travel 
on Mars, 
detectors search 
for gravitational 
radiation.

1913 Niels Bohr proposes 
quantum theory of the atom. 
(Roman Sigaev/Shutterstock)

1975 First charge- 
coupled device 
(CCD) astronomical 
observations.

1980 Very Large 
Array (VLA) radio 
observatory 
completed, Socorro, 
New Mexico.

1999 Chandra 
X-ray Telescope 
launched.

2013 Voyager I 
is first spacecraft 
to leave the solar 
system.

1715 Edmond Halley 
calculates shadow path 
of a solar eclipse over 
Earth’s surface. (NASA/
SSPL/Getty Images)

1589-1609 Galileo 
Galilei proposes that all 
objects fall with the same 
acceleration, independent 
of their masses; builds his 
first telescope, a refractor.

2136 B.C.E. Chinese 
astronomers record solar 
eclipse. (Dr. Mario Motta)

350 B.C.E. Aristotle 
proposes spherical 
Earth, geocentric 
cosmology.

1576-1601
Tycho Brahe makes 
precise observations
of stars and planets.

1609-1610 
Johannes Kepler 
publishes his three 
laws of planetary 
motion.

586 B.C.E.
Thales of Miletus  
predicts solar 
eclipse.

ca. 270 B.C.E. 
Aristarchus of 
Samos proposes 
heliocentric 
cosmology.

1512-1543 Nicolas 
Copernicus proposes 
heliocentric cosmology in 
his Commentariolus and 
De revolutionibus orbium 
coelestium.

1766 Henry 
Cavendish 
discovers 
hydrogen.

1800-1803 William 
Herschel  discovers
infrared radiation from
the Sun. Thomas Young  
demonstrates wave
nature of light. John Dalton 
proposes that matter is 
composed of atoms of 
different masses.

1840-1849 J. W. Draper 
invents  astronomical 
photography; takes first 
photographs of  the Moon. 
Christian Doppler 
proposes that wavelength 
is affected by motion. Lord 
Rosse completes 60-in. 
reflecting telescope at Birr 
Castle in Ireland. Armand  
Fizeau and Jean-Bernard  
Foucault measure speed 
of light accurately. 
(ClawsAndPaws/iStock/Getty 
Images)

ca. A.D. 125 Claudius 
Ptolemy refines and details 
geocentric cosmology in his 
Almagest.

1665-1704  Isaac 
Newton deduces 
gravitational force from the 
orbit of the Moon; builds first 
reflecting telescope; proves 
that the planets obey 
Kepler’s laws because they 
move under the influence of 
the gravitational force; and 
publishes compendium on 
light, Opticks. (Photo12/Ann 
Ronan Picture Library/Alamy)

Background image courtesy of 
Imageman/Shutterstock 

The higher the temperature of a blackbody, the
shorter the wavelength of its maximum emission
(the wavelength at which the curve peaks).
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  Answers to these questions appear in the text beside the corresponding numbers in the margins and 
at the end of the chapter.   

          CHAPTER  

 1   Discovering the Night Sky      

     W H AT  D O  Y O U  T H I N K ?  

    1    Is the North Star—Polaris—the brightest star 
in the night sky?   

   2    What do astronomers define as 
constellations?   

   3    What causes the seasons?   

   4    When is Earth closest to the Sun?   

   5    How many zodiac constellations are there?   

   6    Does the Moon have a dark side that we 
never see from Earth?   

   7    Is the Moon ever visible during the daytime?   

   8    What causes lunar and solar eclipses?    

      the night sky is stunning when viewed in dark, pollution-free environments. (Westend61/Getty Images)  
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living in an era when science has answers to many of the 
questions inspired by the universe. 

 Beautiful, intriguing, and practical, astronomy and 
its ongoing process of discovery have something for 
everyone. This course and this book will help you bet-
ter understand the universe by sharing what we have 
learned and are still learning about many of these ques-
tions. They will also demonstrate the awesome power 
of the human mind to reach out, to observe, to explore, 
and to comprehend. One of the great lessons of modern 
astronomy is that by gaining, sharing, and passing on 

 Y ou are studying astronomy at an extraordinary 
time, as our understanding of the cosmos (or 
the  universe ) and how it evolves grows as never 

before. That is due, in large measure, to the immense 
light-gathering power and sensitivity of modern tele-
scopes, as well as the recent development of telescopes 
that can detect gravitational radiation (miniscule vibra-
tions of space-time). Both types of telescopes enable us 
to test mathematical theories that describe many aspects 
of the cosmos, as well as to discover totally unexpected 
phenomena, such as the fact that the universe is expand-
ing faster every day. 

 Current telescope technology makes it possible for 
astronomers to observe objects and events that were 
completely invisible to us just a few years ago. For 
example, we can now see so far away—and therefore 
so far into the past—that we see the first stars and the 
first galaxies as they just began forming more than 13½ 
billion years ago. We could not see these objects even 
two decades ago, and likewise, it took just 21 years for 
astronomers to discover 1000 planets orbiting nearby 
stars, a feat that would have been impossible 30 years 
ago. After 25 years of searching, we have cataloged over 
3700 of these worlds. 

 Telescopes are not the only means by which we 
are deepening our understanding of what lies beyond 
Earth’s atmosphere. We have also begun the process 
of physically exploring our neighborhood in space. In 
just the past half century, humans have walked on the 
Moon; space probes have roamed over parts of Mars, 
dug into its rocks and soil, and blasted its surface 
with laser beams. Other probes have crashed into one 
comet; brought back debris from another one; landed 
on an asteroid and on Saturn’s murky moon Titan; 
traveled through the shimmering rings of Saturn; dis-
covered active volcanoes and barren ice fields on the 
moons of Jupiter; and, some have even departed from 
the realm of the planets in our solar system, to men-
tion just a few accomplishments. (The solar system is 
comprised of the Sun and every object that orbits it.) 
We are also witnessing the dawn of space tourism, with 
people buying trips to the International Space Station. 

 In the best locations, the night sky is truly breathtak-
ing (  Figure 1-1a   ). Even if you cannot see the thousands 
of stars visible in clear locations (see  Figure 1-1b ), soft-
ware such as   Starry Night  ™ can show them to you. The 
night sky can draw you out of yourself, inviting you to 
understand what is happening beyond Earth and inspir-
ing you to think about our place in the universe. 

   Until the past few centuries, the explanations people 
found for what they saw in the sky were based on beliefs 
that had to be accepted on faith—there was no way to 
test ideas of what stars are, or whether the Moon really 
has liquid water oceans (as was believed back then but 
is not true), or how the planets move, or why the Sun 
shines. Times have changed. We are fortunate to be 

      FIGURE  1-1    The Night Sky Without and With Light Pollution   
(a) the daytime sky, made by scattering blue sunlight, is a cur-
tain that hides virtually everything behind it. (Can you name two 
exceptions?) as the Sun sets, places with little smog or light pol-
lution treat viewers to beautiful panoramas of stars that inspire 
the artist or scientist in many of us. this photograph shows the 
night sky in Goodwood, Ontario, Canada, during a power  outage. 
(b) this photograph shows the same sky with normal city  lighting. 
  (todd Carlson/ SkyNews  Magazine)   

R I  V  U X G

a

b
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knowledge, we transcend the limitations of our bodies 
and the brevity of human life. 

   IN THIS CHAPTER YOU WILL DISCOvER  
 ■     how astronomers map the night sky to help them 

locate objects in it   

 ■    that Earth’s spin on its axis causes day and night   

 ■    how Earth’s orbit around the Sun combined with 
the tilt of Earth’s axis of rotation relative to its orbit 
create the seasons   

 ■    that the Moon’s orbit as seen from Earth creates 
the phases of the Moon, as well as lunar and solar 
eclipses   

 ■    how the year is defined and how the calendar was 
developed     

   SCALES OF THE UNIVERSE  
 In learning a new field it is often useful to see the “big 
picture” before exploring the details. For this reason, 
we begin by surveying the major types of objects in the 
universe, along with their ranges of size and the scale of 
distances between them (  Figure 1-2   ). 

   1-1 Astronomical distances are, 
well, astronomical  
 One of the thrills and challenges of studying astron-
omy is becoming familiar and comfortable with the vast 
range of sizes that occur in it. In our everyday lives we 
typically deal with distances ranging from millimeters 
to thousands of kilometers. (The metric or Interna-
tional System [SI] of units is standard in science and 
will be used throughout this book; however, we will 
often provide the equivalent in U.S. customary units. 

Size of
observable
universe

Size of cluster
of galaxies

Diameter 
of a galaxy Distance to

nearby stars

Distance from
Earth to Sun

Diameter 
of Sun

Diameter
of Earth

Size of a
human

Size of a
virus

Size of
proton

10–15

10–10

10–5

105

1010

1015 

1025 

1020 

1

meter
s

Com10e_fig_1_02.eps

      FIGURE   1-2     The Scales of the Universe    this 
curve gives the sizes of objects in meters, ranging from sub-
atomic particles at the  bottom to the entire observable universe 
at the top. every 0.5 cm up along the arc represents a factor of 
10 larger.    (top to bottom: r. Williams and the hubble Deep Field team 

[StScI] and NaSa; eSa/hubble & NaSa; NaSa/JpL-Caltech/University of 
Wisconsin; NaSa/SDO/hMI; NaSa/NOaa/GSFC/Suomi Npp/VIIrS/Nor-
man Kuring; Jose Luis pelaez/Getty Images; Lee D. Simon/Science Source; 
Courtesy of  Florian Banhart/ University of Mainz)   

R I  V  U X G
ANIMATION 1.1
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Most galaxies also contain black holes, objects with 
such strong gravitational attraction that nothing can 
escape from them in the usual sense of how light leaves 
from the Sun or rockets leave Earth (Figure 1-3g). 
Groups of galaxies, called clusters, are held together 
by gravity (Figure 1-3h), and clusters of galaxies are 
grouped together in superclusters. Huge quantities 
of intergalactic gas are often found between galaxies  
(Figure 1-3i).

Every object in astronomy is constantly changing—
each has an origin, an active period you might consider 
as its “life,” and each will have an end. In addition to 
examining the objects that fill the universe, we will 
also study the processes that cause them to change. 
After all is said and done, you will discover that all the 
matter and energy that astronomers have detected are 
but the tip of the cosmic iceberg—there is much more 
in the universe, but astronomers do not yet know its 
nature!

PATTERNS OF STARS
When you gaze at the sky on a clear night where the 
air is free of pollution and there is not too much light 
from cities or other sources, there seem to be millions 
of stars twinkling overhead. In reality, the unaided 
human eye can detect only about 6000 stars over 
the entire sky. At any one time, you can see roughly 
3000 stars in dark skies, because only half of the 
stars are above the horizon—the boundary between 
Earth and the sky. In very smoggy or light-polluted 
cities, you may see only a tenth of that number or less 
(see Figure 1-1).

In any event, you probably have noticed patterns 
of bright stars, each technically called an asterism, 
and you are familiar with some common names for 
some of them, such as the ladle-shaped Big Dipper and 
broad-shouldered Orion. These recognizable patterns of 
stars (Figure 1-4a) are informally called constellations 
in everyday conversation. Technically, however, constel-
lations are entire regions of the sky and everything in 
them (Figure 1-4b). In what follows, we will often use 
the word “constellation” to mean either the asterisms 
or the regions of the sky. Be careful to consider which 
version of the word is in use.

Appendix E-10 lists conversion factors between these 
two sets of units.)

A hundredth of a meter or a thousand kilometers are 
numbers that are easy to visualize and write. In astron-
omy, we deal with particles as small as a millionth of a 
billionth of a meter and systems of stars as large as a 
thousand billion billion kilometers across. Similarly, the 
speeds of some things, like light, are so high as to be 
cumbersome if you have to write them out in words each 
time. Scientific notation (Appendix A) makes compari-
sons easy, telling us how many factors of 10 in size, mass, 
brightness, distance, and other parameters one object is 
compared to another.

The size of the universe that we can observe and the 
range of sizes of the objects in it are truly staggering. 
Figure 1-2 summarizes the array of sizes from atomic 
particles up to the diameter of the entire universe visible 
to us. Unlike linear intervals measured on a ruler, the 
sizes of objects increase by powers of 10 in equal inter-
vals in this figure; moving up 0.5 3 1022 m (0.5  cm) 
along the arc of this figure brings you to objects 10 
times larger. Because of this, going from the size of a 
proton (roughly 10215 m) up to the size of an atom 
(roughly 10210 m) takes about the same space along 
the arc as going from the distance between Earth and 
the Sun to the distance between Earth and the nearby 
stars.

This wide range of sizes underscores the fact that 
astronomy synthesizes or brings together information 
from many other fields of science. While we cannot 
go to the ends of the universe to examine all its com-
ponents, the light from the universe coming to us, 
combined with our ever-growing understanding of 
the laws of nature, provides invaluable insights into 
how the various components of the cosmos work and 
how they interact with each other. We will discuss 
some of the underlying principles of science as we 
need them.

What, then, have astronomers seen of the universe? 
Figure 1-3 presents examples of the types of objects 
we will explore in this text. An increasing number of 
planets like Jupiter, rich in hydrogen and helium (Fig-
ure 1-3a), as well as rocky planets similar to Earth, 
are being discovered orbiting other stars. Much smaller 
pieces of space debris—some of rock and metal called 
asteroids or meteoroids (Figure 1-3b), and others of 
rock and ice called comets (Figure 1-3c)—
orbit the Sun (Figure 1-3d) and other stars. 
Vast stores of interstellar gas and dust are 
found in many galaxies; these “clouds” are 
often the incubators of new generations of 
stars (Figure 1-3e). Stars by the millions, bil-
lions, or even trillions, often accompanied by 
interstellar gas and dust, are held together in 
galaxies by the force of their mutual gravi-
tational attraction (i.e., gravity; Figure 1-3f). (HI & LOIS ©1992 by King Features Syndicate, Inc. World rights reserved)
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also called the  North Star  because it is located almost 
directly over Earth’s North Pole. So, while Polaris is not 
even among the 20 brightest stars (see Appendix E-6), 
it is easy to locate. Whenever you face Polaris, you are 
facing north. East is then on your right, south is behind 
you, and west is on your left. (There is no equivalent star 
over the South Pole.) 

   The Big Dipper also illustrates the fact that being 
familiar with just a few constellations makes it easy to 
locate less distinctive stars and other constellations. The 
most effective way to do this is to use vivid visual connec-
tions, especially those of your own devising. For example, 
imagine gripping the handle of the Big Dipper and slam-
ming its bowl straight down onto the head of Leo (the 
Lion). Leo comprises the first group of bright stars your 
bowl encounters. As shown in  Figure 1-5 , the brightest 

     1-2 Well-known constellations make 
locating more obscure stars and 
constellations easy  

1   People have known for millennia how to find the 
direction north in locations where the Big Dipper is vis-
ible. To do this, locate the Big Dipper (the asterism in 
the constellation Ursa Major) and imagine that its bowl 
is resting on a table (  Figure 1-5   ). If you see the dipper 
upside down in the sky, as you frequently will, imag-
ine the dipper resting on an upside-down table above 
it. Locate the two stars of the bowl farthest from the 
Big Dipper’s handle. These are called the  pointer stars.
Draw a mental line through these stars in the direction 
away from the table, as shown in  Figure 1-5 . The first 
moderately bright  star you then encounter is Polaris, 

e Interstellar gas and dust f Galaxies

c Rocky and icy debris

g Black holes h Clusters of galaxies i Intergalactic gas

a Planets b Rocky and metallic debris

d Stars

Jupiter Asteroid Eros

Comet West

Southern
Pinwheel
Galaxy

Part of the
Eagle Nebula

Sun

Black hole

In-spiraling
gas and dust

Hercules
cluster of
galaxies

Galaxies

Intergalactic gas

 FIGURE  1-3    Inventory of the Universe    pictured here are 
examples of the major categories of objects that have been 
found throughout the universe. the black hole is in the center 
of the bright dot in (g). You will discover more about each type 
of object in the chapters that follow.    (a: NaSa/hubblesite; b: NaSa; 

c: peter Stattmayer/eSO; d: Big Bear Solar Observatory/New Jersey 
 Institute of technology; e: NaSa/Jeff hester & paul Scowen; f: australian 
 astronomical Observatory/David Malin Images; g: NaSa; h: NOaO/aUra/
NSF; i: Image courtesy of NraO/aUI/NSF)   
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